Join today and be a part of the fastest growing B2B Network Join Now

Polymer Antioxidants

  • Origin: China
  • Supply Type: oem service

Supplier Info.

  • Employees Total 5
  • Annual Revenue

TINTOLL antioxidant in polymer example are the most important additive in polyolefin, plastic, resin and other products. The purpose of antioxidants for polyolefins is to prevent or delay oxidation and to ensure the processing and use quality of products. Throughout the plastics production process, degradation and processing requirements can reduce the strength and stability of plastic parts.

TINTOLL plastic antioxidants help to extend the useful life of plastics by minimizing changes in sical properties throughout thermal processing, including extrusion, injection molding, blow molding and rotational molding. Antioxidants for polyolefins improve the weatherability of UV stabilized systems and enhance the durability of plastics at moderate to high temperatures.

TINTOLL antioxidant additives for plastics can help maintain gloss and transparency, prevent yellowing, surface cracking and odor, and maintain critical mechanical properties such as impact resistance, elongation and tensile strength.

TINTOLL's antioxidant additives for polymers work synergistically with other plastic additives such as UV stabilizers, absorbers and antistatic agents to make polymer products perform better for longer, promoting a circular economy and reducing plastic waste. Our broad product portfolio including plastic antixoidant additives can help you extend product life by preventing premature product degradation, such as color fading or odor development, and increase the durability of products stored outdoors for long periods of time.

Types of Polymer Antioxidants

TINTOLL provide a wide range of stabilizers that protect polymers throughout their life cycle - during manufacture, storage, processing and final application. TINTOLL’s wide range of polymer antioxidants plays an important role in counteracting these effects. The selection of antioxidant depends on factors such as compatibility, color and thermal stability, volatility and stabilizer efficiency. TINTOLL's hindered nolic antioxidants provide processing stability and long-term thermal stability. Applications include polyethylene, polypropylene, ABS, polyester, polyamide, rubber, PVC, and styrene. TINTOLL's ste antioxidants provide exnt processing stability. Applications include various thermoplastic polymers such as polyolefins, polycarbonates, ABS and polyesters. Like hindered nolic antioxidants, TINTOLL is available in a variety of sical forms as well as standard and custom blends. TINTOLL's thioester antioxidants are used as synergists in many applications in combination with other nolic antioxidants to provide long-term protection to polymers. Applications include polyethylene, polypropylene, ABS, polyester and polyamide.

Classification of Antioxidants

Depending on their structure, antioxidants polymer additives interrupt the degradation process in different ways. The main categories of polymer antioxidants are as follows:

Primary Antioxidants: They work by scavenging peroxide free radicals formed during oxidation. The two main classes of primary antioxidants are hindered nols and aromatic amines.

Secondary Antioxidants: The polymer antioxidants examples react with hydroperoxides to produce non-free radical, non-reactive products, also known as hydroperoxide decomposers. stes are most effective at the high temperatures of melt processing operations, while thioethers work best in the solid se at long-term use temperatures.

Multifunctional Antioxidant Blends: They combine primary and secondary antioxidant functions in one compound.

Metal Deactivators: They prevent oxidative degradation caused by copper or other metals by chelation.

The Importance of Polymer Antioxidants in the Plastics Industry

Classification of Antioxidants

Antioxidant polymer additives stabilize the quality of plastic products and slow down the degradation process.

Oxidation is the process by which oxygen comes into with a material and affects that material. This effect is usually a form of degradation and occurs as free radicals react with material molecules, initiating a chemical chain reaction.

First, plastics are manufactured at extreme temperatures and exposed to a process called thermal oxidation. To keep polymers stable, plastic antioxidants must be introduced during the manufacturing process.

Second, plastics are still prone to oxidation after they are manufactured. Oxidation can negatively affect the quality and life cycle of a product. Polymer antioxidants can help inhibit harmful oxidative processes.

The most common plastic products containing antioxidant additives include various pipes and fittings used in the construction industry, polyethylene films (PE films), products and films made from polypropylene (PP).

Premium Services
Tell us what you need
Girl Right
Cross Popup
Arrow 2

I Am :

Signup today to claim your Discount. Get Started before it's too late!

Arrow 1
We use cookies to ensure that we give you the best experience on our website. If you continue to use this site we will assume that you are happy with it. Ok